The Integrated Economic-Environmental Modeling Platform Project

Onil Banerjee, RMGEO and WAVES Consultant
Martin Cicowiez, Universidad Nacional de La Plata
Sebastian Dudek, RMGEO
Neville Crossman, University of Adelaide
Mark Horridge, Victoria University
–Our Country Partners.

SECOND FORUM ON NATURAL CAPITAL ACCOUNTING FOR BETTER POLICY
The Hague, November 22-23 2017.
WHAT IS IEEM?

Environment

- Mineral and Energy Resources
- Land
- Soil Resources
- Timber Resources
- Aquatic Resources
- Water Resources

Economy

- Provisioning ecosystem services (raw materials for production)
- Non-provisioning ecosystem services
- Effluents and Emissions
- Environmental investments

Production
- Firms
- Households

Products

Employment

Consumption
IEEM Integrated Economic-Environmental Modeling

IEEM: WHAT IS NEW?

1. Integrates SEEA data in a forward-looking economy-wide framework.

2. Has environmental modeling modules for each environmental resource.

3. Indicators capture impacts on natural capital.

4. Links IEEM with ESM to project scenario-based future ecosystem service supply.
IEEM Integrated Economic-Environmental Modeling

IEEM AND THE POLICY CYCLE
IEEM APPLICATIONS

AN INTEGRATED FRAMEWORK
IEEM-GUA: SUSTAINABLE DEVELOPMENT GOALS

- SDG 2, Zero Hunger, Target 2.3: double agricultural productivity and rural incomes.
- Strategy: increase irrigated agriculture.

- Increase of irrigated area: 106,300 ha.
- Investment: US$7.95 million
- Time horizon: 5 years
- SDG 2, Target 2.3
• 41% and 83% gap remain to double agricultural output and income, respectively.

• Poverty impacts: 2.42 million people are lifted from poverty; 100,000 people attributed to investments.
Synergies

Certain lines of action (2- Zero Hunger) can contribute to various SDGs: **SDG 1**- Eliminating Poverty, and; **SDG 8**- Promoting Sustainable Economic Development and Employment (increase GDP by US$1.37 billion).

Trade-offs

Trade-offs: **SDG 2** implies more deforestation, moving away from **SDG 15**- Sustainable Use of Forests. Increased emissions slows progress on **SDG 13**- Action on Climate Change.

- Deforestation ↑ 4,699 ha by 2030.
- Water consumption ↑ 1,860 ML/capita.
- GHG ↑: 642,346 tons CO₂.
IEEM APPLICATIONS

ECONOMY-WIDE VS. PARTIAL ANALYSIS
IEEM - Integrated Economic-Environmental Modeling

IEEM-GUA AND THE NDCs

- Guatemala responsible for <0.1% of global emissions.
- BAU = 53.85 million tons CO2 equivalent in 2030.
- Reduce emissions 11.2%, by 6.04 M tons CO2 equivalent.
- Target sectors: forestry, agriculture and transport sectors.
TRANSPORT SECTOR INTERVENTION

• TRNS-EFF: 15% increase efficiency in fossil fuel combustion in transport (freight shipping) sector.

• TRNS-ELE: Substitute 15% of fossil-fuel based energy with electricity in transport sector (same number of terajoules generated).
TRANSPORT SECTOR EMISSIONS BY 2030
ECONOMY-WIDE EMISSIONS BY 2030

- TOTAL TRNS-EFF
- TOTAL TRNS-ELE

Tons of CO2 equivalent
IEEM-GUA: FUELWOOD SECTOR INTERVENTION

• Fuelwood supplies 57% of Guatemala’s national energy consumption.

• Issues: deforestation; 10 million m³ deficit; 5,000 premature deaths per year, and; 1% GDP loss.

EFFICIENCY + HEALTH

25% more efficient fuelwood cookstoves; health benefits agricultural labor productivity.

EFFICIENCY + ZERO DEFORESTATION

efficiency + health, with complementary strategy of zero deforestation.
ECONOMY-WIDE EMISSIONS
INDICATORS THAT CAPTURE NATURAL CAPITAL IMPACTS
POST-CONFLICT LAND-USE TRAJECTORIES IN COLOMBIA

• Baseline: historical deforestation trend of 240,000 ha/yr between 2000 and 2013.¹

DEFOR-INC:
16% increase in deforestation between 2018-2030.

DEFOR-DEC:
75% reduction in rate of deforestation between 2018-2030; better monitoring and enforcement.

DEFOR-DEC-TFP:
DEFOR - DEC + five percentage point increase in total factor productivity for agriculture between 2018 y 2022; 12.5% above baseline between 2022-2030.

Source: ¹ World Bank, 2015.
RESULTS: GDP

GDP, difference between baseline (1 USD: 3,012 COP).

- In 2030 DEFOR-INC: 348 B COP;
- DEFOR-DEC: -2,006 B COP;
- DEFOR-DEC-TFP: 1,853 B COP.
RESULTS: GENUINE SAVINGS

Genuine savings, difference from baseline.

- By 2030 DEFOR-INC: -482 B COP;
- DEFOR-DEC: 2,391 B COP;
- DEFOR-DEC-TFP: 3,383 B COP.
IEEM APPLICATIONS

IEEM + ESM

GUATEMALA
IEEM-GUA: SUSTAINABLE DEVELOPMENT GOALS

- SDG 2, Zero Hunger, Target 2.3: double agricultural productivity and rural incomes.
- Strategy: increase irrigated agriculture.

Increase of irrigated area: 106,300 ha.
Investment: US$7.95 million
Time horizon: 5 years
SDG 2, Target 2.3
IEEM Integrated Economic-Environmental Modeling

IEEM + ESM

Environment
- Mineral and Energy Resources
- Land
- Soil Resources
- Timber Resources
- Aquatic Resources
- Water Resources

Provisioning ecosystem services (raw materials for production)

Non-provisioning ecosystem services

Effluents and Emissions

Environmental investments

Economy

Production
- Firms
- Households

EMPLOYMENT

PRODUCTS

Consumption

Households

Firms
LAND USE LAND COVER MODEL
IRRIG
LULC in 2015
IRRIG
LULC in 2020
IRRIG
LULC in 2030
IRRIG
Sediment export
ton/ha/yr
in 2030
IRRIG Nitrogen export ton/ha/yr in 2030
IRRIG
Average annual baseflow mm in 2030
1. Integrates SEEA data in a forward-looking economy-wide framework.

2. Has environmental modeling modules for each environmental resource.

3. Indicators capture impacts on natural capital.

4. Links IEEM with ESM to project scenario-based future ecosystem service supply.
Thank you.
For more information, contact:
Onil Banerjee
obanerjee@gmail.com
Tel: 1-202-615-0603