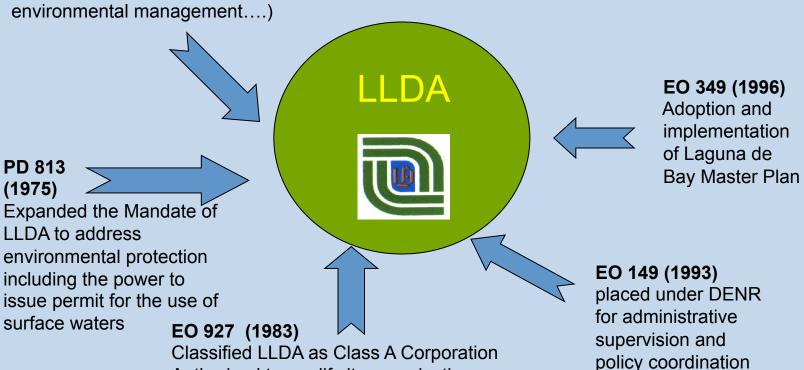
Ecosystem Accounting for the Laguna de Bay Basin

Jocelyn G. Sta. Ana Focal Person – LLDA WAVES

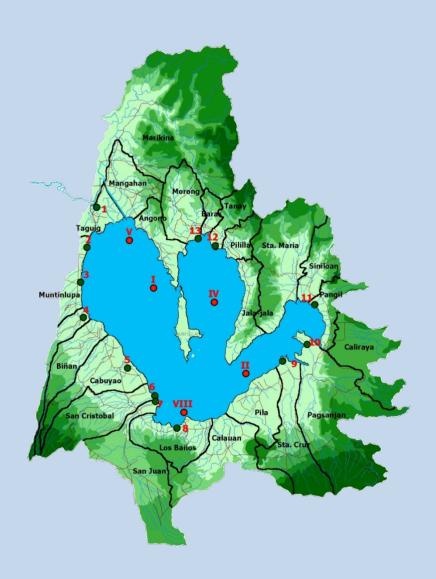

SEARCA, Los Banos, Laguna February 26, 2015

LAGUNA LAKE DEVELOPMENT AUTHORITY

RA 4850 (1966) . . to promote and accelerate the development and balanced growth....with due regard for

Authorized to modify its organization

Granted water rights over Laguna de Bay and other water bodies within the region


Granted power to control and abate pollution within the region

Authorized to collect fees for the use of lake water

Salient Features of Laguna de Bay

- total surface area = some 900 km²
- average volume = 2,250,000,000 m3
- shoreline length = some 220 kilometers
- watershed area = approx. 3,820 km²
- catchment total human population = about 15 million
- divided into 24 hydrological sub-basins with some 100 streams that drain into the lake
- three distinct bays: West Bay, Central Bay and East Bay
- average depth of the lake is 2.5 m
- Pasig River is the only outlet of the lake

Existing Lake Uses

Fisheries

Irrigation

Transport Route

Recreation

Industrial Cooling

Flood Reservoir

Power Supply

Issues: Pollution

Domestic Wastewater

Industrial Wastewater

Agricultural Wastes

Issues: Siltation

Four million tons of suspended sediment are estimated to enter the lake annually (0.5 cm per year) resulting to sediment delta that extends into the lake

Issues: Flooding

Policy Issues identified in the Stakeholders consultation

- Priority uses for the lake
- Fishery resource management, valuation of the contribution of Laguna de Bay to total fish production in the country
- Priority areas for protection where law enforcement could be more extensive – pollution, sediment loading
- Water pricing
- Land development planning integrate green development, urban design

Initial Steps

- Creation of Technical Working Group water, land and fishery accounts
- Data availability and gap assessment
- Use DPSI table (drivers, pressures, state, impacts)
- Develop a framework

Challenges on Data Collection

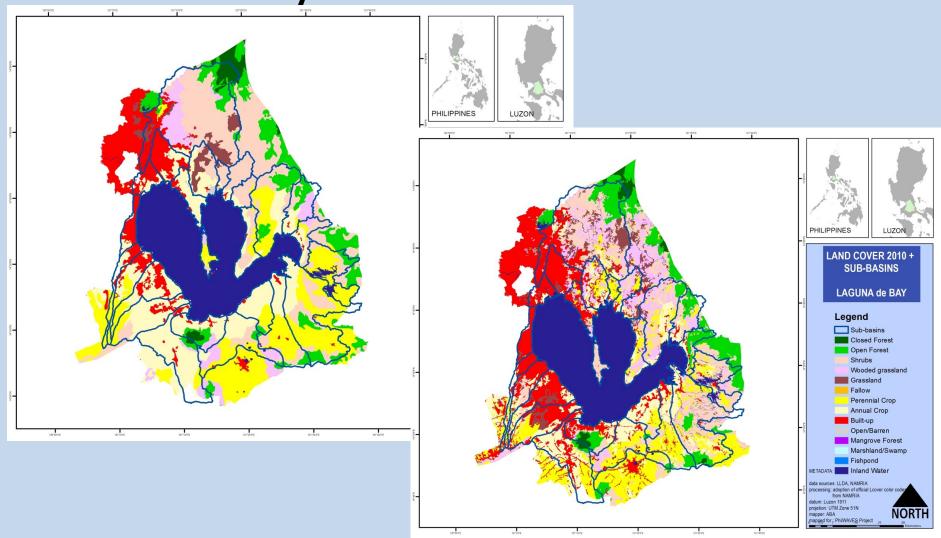
- Different data formats tables, graphs, maps
- Different survey methodologies
- Different time periods
- Fee for certain data
- Takes some time to gather data
- Hesitation to release data on production costs (apprehension that the user fees will increase)

Solutions

- Training on Data Processing
- Training on GIS Mapping and Processing
- Conduct Focus Group Discussions and Meetings with concerned agencies
- Memorandum of Understanding /Agreement with partner agencies
- Communications Plan/ Report to the stakeholders

Trainings Conducted SedNet Modelling

- Biodiversity and Management Bureau
- February 10 to 12, 2015
- Conducted by Mr.
 Arnan Araza, Verna
 Duque and Engr. Emil
 Hernandez
- Participants 6 LLDA, 3
 DENR, 1 NEDA



Results

- Currently: finalising results first phase (1 year)
- Results include:
 - Analysis of land use change 2003-2010 by municipality and by sub-basin
 - Analysis of discharges and water quality
 - Upland services: erosion control
 - Lake services: fisheries (capture + aquaculture),
 water supply and flood retention
- Focus has been on physical services, monetary analysis planned in coming months

Preliminary results 1: Land Account

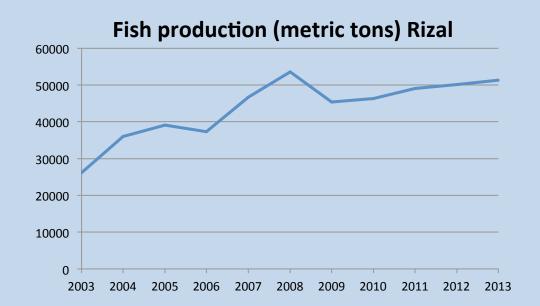
Results 2: Land use change matrix

	Area (ha) in	Area	Area in	Area	Change in	
Land Cover	2010	Percentage	Hectares 2003	Percentage	ha (+,-)	% (+,-)
Annual Crop	57359	12	94087	19	-36727	-7.41
Built-up	92894	19	51968	10	40926	8.26
Closed Forest	5263	1	7844	2	-2581	-0.52
Fallow			26	0	-26	-0.01
Fishpond	76	0			76	0.02
Grassland	19932	4	9630	2	10302	2.08
Inland Water	96495	19	2965	1	93530	18.87
Lake			90723	18	-90723	-18.30
Mangrove Forest	1	0	35	0	-33	-0.01
Marshland/Swamp	4	0			4	0.00
Open Forest	40705	8	41770	8	-1065	-0.21
Open/Barren	702	0	801	0	-99	-0.02
Perennial Crop	67055	14	84579	17	-17523	-3.53
Shrubs	77897	16	89584	18	-11688	-2.36
Wooded grassland	37348	8	21731		15617	

100

495743

495732


Grand Total

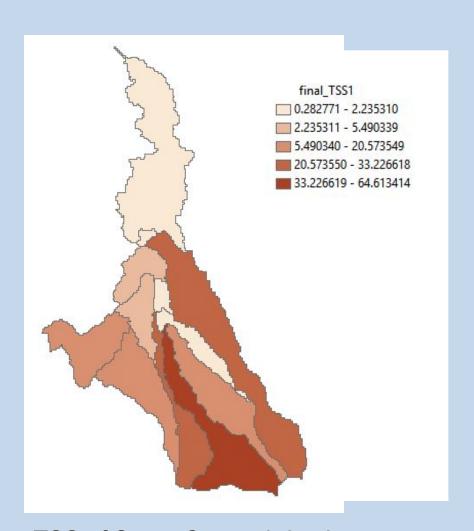
Results 3. Water discharges (by PSIC)

2003	Agriculture (PSIC section A)	Manufacturi ng (PSIC Section C)	Water supply, Sewerage and waste management (PSIC section E)	Accommoda tion, food service activities (PSIC Section I)	Other (all other PSIC sections)	House holds	Rest of Philippi nes	
1. Gross emissions (BOD, metric tonnes)		266,919	2,778	7,977	487,542	*		827,55 4
1a. Direct emissions to water								
1a.1 Without treatment								
1a.2 After onsite treatment								
1a.i to inland water resources								
1a. li to the sea								
1b. To Sewerage								
2. Reallocation of								
emissions by sewerage ind.					DA		9	
3. Net emissions (1a +2)							V	INVES

Results 4: Aquaculture (Rizal)

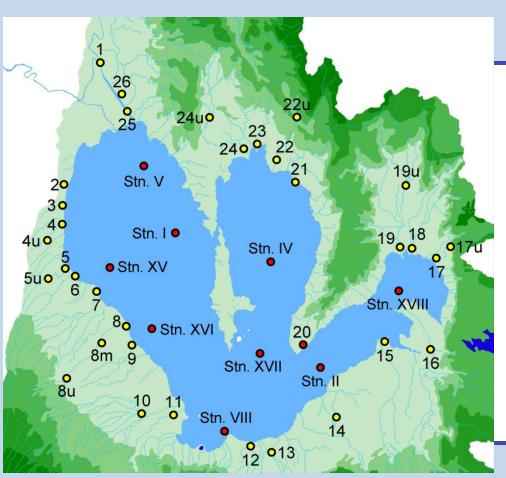
2003 TO 2013 FISH PRODUCTION - AQUACULTURE (in metric tons)													
	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013		
RIZAL													
Fishcages													
Tilapia	641	702	675	539	1802	1945	1659	1590	1694	1736	1784		
Carp	237	395	384	393	1061	1143	819	774	828	855	871		
Fishpens													
Milkfish	13516	17778	16181	15027	17610	21317	18628	18334	19642	20062	20454		
Tilapia	3622	4576	6218	6481	8773	11396	10986	11141	11769	11998	12299		
Carp	8079	12541	15583	14830	17457	17802	13313	14434	15067	15438	15937		

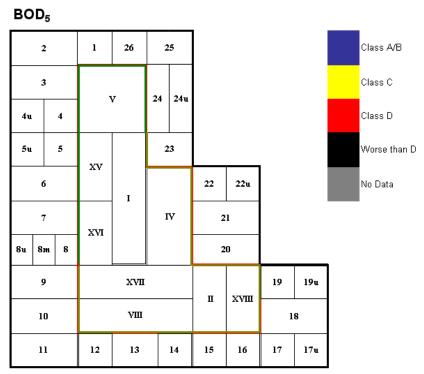
But: ecosystem condition accounts show a need to verify fish (food safety) quality


Results 5: erosion control

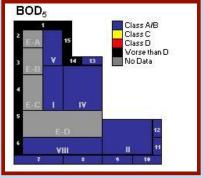
S u b -	Area	Sediment generated	Sediment that	Ecosystem		
watershed	(km2)	under 2010 land	would be	service (avoided		
		cover	generated under	erosion)		
		(kton sediment/year)	bare land cover			
unit		(kton sediment/year)	(kton sediment/	(kton sediment/		
			year)	year)		
1 Marikina	535	530	3238	2708		
2 Calauan	160	49	167	118		
3. Pagsanjan	278	434	1007	573		
4 . S a n	147	46	79	33		
Cristobal						
5. San Juan	192	46	259	213		
6. St. Cruz	129	202	785	583		
7. San Pedro	52	9	11	. 2		
TOTAL	1493	1316	5546	4230		

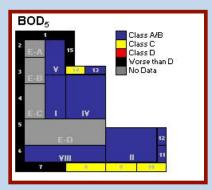
Sedimentation loads per sub-watershed

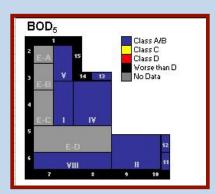

Detailed information on areas generating sediment loads affecting water retention service

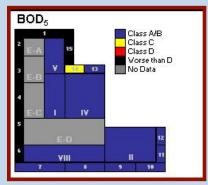


Results 6: Water Quality

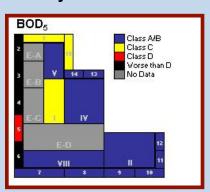


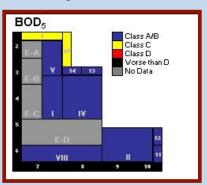


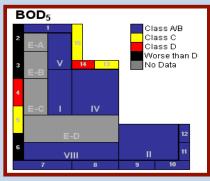


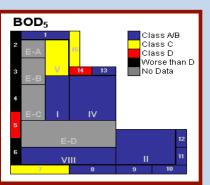


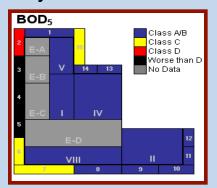
Biochemical Oxygen Demand (2011)



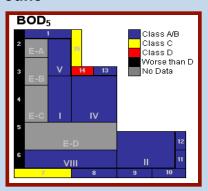



January

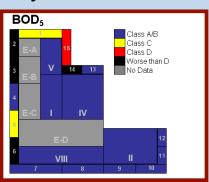

February


March

April

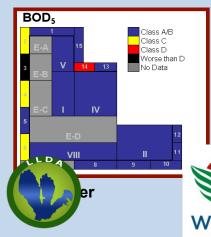


May



September October

June



July

November

August

Monthly Over-all Status

			April			October					
Station	Location	2003	2003 2010 2013				2010	2013			
1	Central West Bay										
II	East Bay										
IV	Central Bay										
V	Northern West Bay										
VIII	South Bay										
XV	San Pedro (West Bay)										
XVI	Sta. Rosa (West Bay)										
XVII	Sanctuary (Central Bay)										
XVIII	Pagsanjan (East Bay)										
1	Marikina River										
2	Bagumbayan River										
3	Buli Creek										
4	Mangangate River Downstream										
4u	Mangangate River Upstream										
5	Tunasan River Downstream										
5u	Tunasan River Upstream										
6	San Pedro River										
7	Biñan River										
8	Sta. Rosa River Downstream										
8m	Sta. Rosa River Midstream										
8u	Sta. Rosa River Upstream										
9	Cabuyao River										
10	San Cristobal River										
11	San Juan River										
12	Molawin Creek										
13	Bay River										
14	Pila River										
15	Sta. Cruz River										
16	Pagsanjan River										
17	Pangil River Downstream										
17u	Pangil River Upstream										
18	Siniloan River										
19	Sta. Maria River Downstream										
19u	Sta. Maria River Upstream										
20	Jala Jala River										
21	Pililla River										
22	Tanay River Downstream										
22u	Tanay River Upstream										
23	Baras River										
24	Morong River Downstream										
24u	Morong River Upstream										
25	Manggahan Floodway										
26	Sapang Baho River										

Water Quality

April (dr	y sea	son)																
			3 Wat		•) Wat lassif		•		2013 Water Quality					
		C	105511	icatio	11			C	105511	icatio)		classification					
	Α	В	С	D	BD	ND	Α	В	С	D	BD	ND	Α	В	С	D	BD	ND
Rivers	0	0	1	6	6	3	0	0	0	6	9	0	0	0	0	6	8	1
Lake	0	0	1	4	0	0	0	0	2	3	0	0	1	0	2	2	0	0
October	(dry																	
season)																		
		2003	8 Wat	er Qu	ality		2010 Water Quality				2013 Water Quality							
		C	lassif	icatio	n			C	lassif	icatio	n		classification					
	Α	В	С	D	BD	ND	Α	В	С	D	BD	ND	Α	В	С	D	BD	ND
Rivers	0	0	0	6	9	0	0	0	0	5	10	0	0	0	0	6	8	1
Lake	3	0	2	0	0	0	3	0	2	0	0	0	4	1	0	0	0	0

Water Quality Changes

April (dry	seasor	1)													
	Change from 2003 to 2010								Change from 2010 to 2013						
	Α	В	С	D	BD	ND	Α	В	С	D	BD	ND			
Rivers	0	0	-1	0	3	-3	0	0	0	0	-1	1			
Lake	0	0	1	-1	0	0	1	0	0	-1	0	0			
October															
(dry															
season)															
		Change	e from	2003 t	o 2010)	Change from 2010 to 2013								
	Α	В	С	D	BD	ND	Α	В	С	D	BD	ND			
Rivers	0	0	0	-1	1	0	0	0	0	1	-2	1			
Lake	0	0	0	0	0	0	1	1	-2	0	0	0			

Next steps (by March)

- Analysis of flood zones and flood risks in number of households
- Monetary valuation of flood risk
- Fisheries survey for monetary valuation fisheries service

Thank you!

