

PBL Netherlands Environmental Assessment Agency

From statistics to policy

Environmental statistics and accounts in The Netherlands

June 1, 2016 | Arjan Ruijs

Lessons for WAVES Partnership countries

- 1. We need transparency about decisions with regard to environmental statistics and a long term vision
- Translating statistics to policy is a different task than collecting them
- Different channels exist to connect statistics and policy
- 4. Giving natural capital a role in decision making adds new requirements to data needs

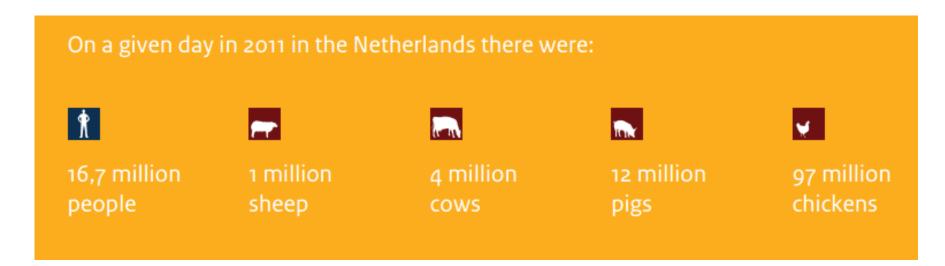
1. Long term vision on statistics and accounts

1969: start of the Department Environmental Statistics

focus on waste and emissions to air and water

1974 Pollutant Release and Transfer Register

Focussing on health issues related to water, soil and air pollution


Throughout the years more statistics were added:

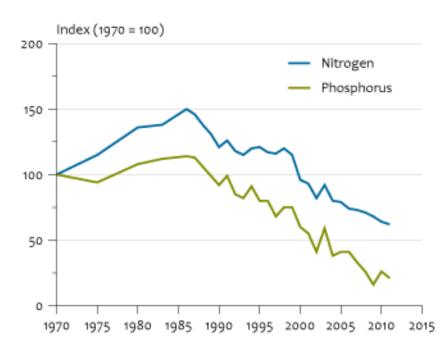
Energy, manure, recycling, resource use, air-soil-water quality, noise and odor, nature and environmental costs/ levies/sector

1. Environmental statistics: an example

Nutrient surpluses in agriculture.

1. Environmental statistics: an example

Nutrient surpluses in agriculture.


1960s: signs of environmental problems due to nutrient surplus.

1973: Unpublished estimates of the problem.

1982: First statistics on nutrient surpluses published.

1984: First policies to reduce nutrient surplus.

Nutrient surplus in agriculture

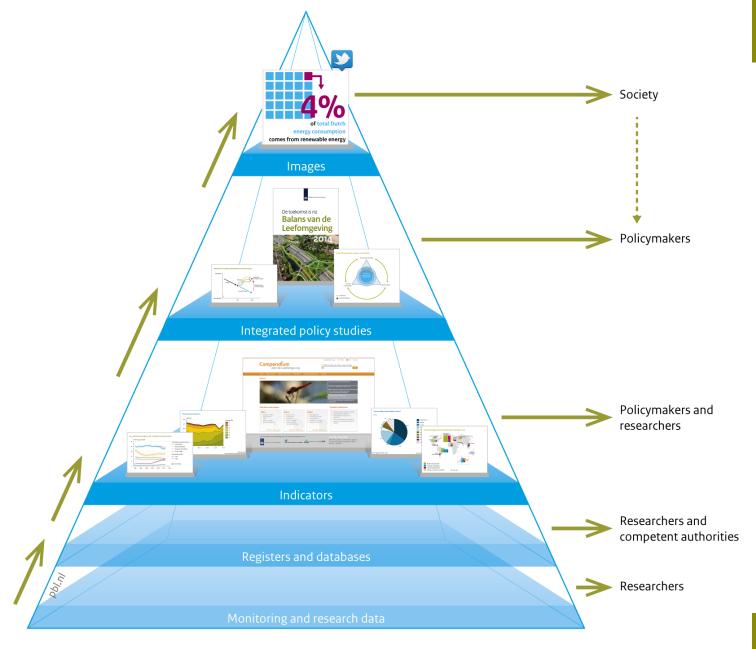
Source: CBS.

1. Long term vision on statistics and accounts

1994: NAMEA

- Physical supply and use accounts
 - Waste accounts
 - Air and water emissions accounts
 - Energy and water accounts
 - Material flows
- Subsoil Accounts
 - Petroleum and natural gas reserves
- Monetary environmental accounts
 - Environmental taxes and charges, sector and costs

1996: Sustainable National Income (SNI)



2. Translating statistics into policy

Good statistics and accounts don't make good policy but good policy needs good statistics and accounts.

Statistics and accounts are better able to inform policy if they are provided with context and interpretation.

The information pyramid

ਠ

2. Translating statistics into policy

Application in different phases of the policy cycle

- Awareness raising and prioritization
- Support policy making
- Monitoring and evaluation

Other applications

- Allocation of environmental costs and benefits
- International comparison and obligations
- Research

3. Channels to translate statistics into policy

Institutionalization of data collection and use

- CBS Central Commission for Statistics with Ministries and data users.
- Independent, trustworthy agencies work on statutory products the government must comment upon.
- Governmental advisory councils that associate with scientific, social and economic stakeholders

Pause slideshow III

Uitgelicht

3. Channels t

- a. Statline
- b. Environmental data compendium
- Green Growth
- Environmental Accounts
- Nature outlook
- g. Energy outlook
- h. Sustainability monitor
- Monitor business policy
- Public Health monitor
- k. Atlas natural capital

...and many more

Natural resources are the pillars of our society. The soil provides drinking water, wind gives

energy and our topsoil enables food production. However, the way we currently utilize our

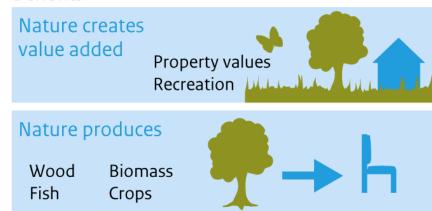
4. Giving natural capital a role in decision making

The economy restricts nature

Pollution, emissions and overexploitation

The economy supports nature

Benefits



Support

Nature supports the economy

Benefits

Cost savings

Well-being

Nature contributes to health, knowledge and happiness

Thank you

מלטמ	
anvironmer	
40+1-0	- C - C - H

accounts	En Ad re	onomy omestic product (gro)10) nal consumption exp (2010) vestments in fixed a pulation nployment ivironmentally adju fiusted national inco serves (net) ergy et domestic energy (ergy intensity traction natural gas ineral reserves gas ³⁾ cluation mineral reserves
15		Labour input environmental Value added environmental (basic prices)

Economy

Domestic product (gross, market pr

	Тар
	Тар
	Hea
t (aross	Nut
t (gross,	
ND 0V D0D/	Mat
on expend	Mat
vod accor	Mat
xed asset	Soli
	Lan
	Gre
y adjuste	Gre
al income	Gre
	CFK
	Acid
	Fine
ergy use	
3,	Pol
al cas	Env
al gas	Sha
gas ³⁾	Env
al reserve	Lab
nmental goods	Val
nmental goods	(ba

Water

Groundwater abstraction ⁴⁾
Tap water use ⁵⁾
Tap water use intensity
Heavy metals to water ⁶⁾
Nutrients to water ⁶⁾
Materials
Material consumption biomass
Material consumption metals
Solid waste production
Landfilled waste
Greenhouse gas emissions and air pollution
Greenhouse gas emissions
Greenhouse gas emission intensity
CFK emissions (ozone layer depletion)
Acidifying emissions
Fine dust emissions
Policy instruments and economic opportunities
Environmental taxes and fees
Share environmental taxes and fees in total taxes
Environmental costs
Labour input environmental goods and services sector
Value added environmental goods and services sector
(basic prices)

million kg million kg million kg million kg million CO,-eq. CO₂ eq/1,000 euro thousand CFK12-eq. billion ac-eq. million kg million euros million euros

%

x 1,000 FTE

million euros

million m³

million m3

litre/euro 1,000 eq. 1,000 eq.

No data available for international comparison