

Land and Ecosystem Accounts in South Africa Mandy Driver (SANBI)

7th Annual WAVES Partnership Meeting Kigali, 5-7 June 2017

Background

- SANBI government agency under Ministry of Environmental Affairs
- SANBI's mandate includes:
 - monitoring & reporting on the state of ecosystems
 - providing science-based policy advice

- SA one of 7 pilot countries in Advancing Natural Capital Accounting (ANCA) (2014-2015)
- Partnership between SANBI & Statistics South Africa to develop ecosystem accounts, initiated 2013

What questions do ecosystem accounts answer?

- Identifying problems
 - Which ecosystem assets are in most rapid decline?
 - How are ecosystem services affected?
- Understanding the problem
 - What/who is driving the decline?
- Helping to target interventions and allocate resources to most important areas

Pilot: Land and ecosystem accounts for KZN

KwaZulu-Natal (KZN)

- 11 million people
- 16% of GDP
- Durban metro, major port, coal mining, steel production, sugar cane, fruit farming, crops, stock farming, timber plantations, ecotourism
- Large rural population, high poverty and unemployment levels

(47 detailed classes summarised to 16 classes for the accounts)

Ecosystem assets – classified and mapped

Physical account for land cover in KZN

hectares	Natural	Degraded	Fallow lands	Timber plantations	Subsistence agriculture	Dryland cultivation
Land cover 2005	6284888.4	641270.5	43114.2	694125.8	240491.5	251002.6
Total additions to stock	0.0	176067.0	26288.9	66319.4	398723.8	67897.8
Total reductions in stock	672172.8	110937.4	3742.8	23070.3	26965.0	10026.0
Net additions (additions - reductions)	-672172.8	65129.6	22546.1	43249.1	371758.8	57871.9
Net additions as % of opening land cover	-10.7	10.2	52.3	6.2	154.6	23.1
Total turnover (reductions + additions)	672172.8	287004.5	30031.7	89389.8	425688.9	77923.8
Total turnover as a % of opening land cover	10.7	44.8	69.7	12.9	177.0	31.0
No land cover change	5612715.6	530333.0	39371.4	671055.5	213526.5	240976.6
No land cover change as a % of opening LC	89.3	82.7	91.3	96.7	000	96.0
Land cover 2008	5612715.6	706400.1	65660.3	737374.9		
Total additions to stock	105.0	8002.8	2381.6	5449.0	V ₀	v ala
Total reductions in stock	126981.4	41473.8	3386.8	4595.7	I/G	y ele
Net additions (additions - reductions)	-126876.4	-33471.1	-1005.2	853.3		-
Net additions as % of opening land cover	-2.3	-4.7	-1.5	0.1		•
Total turnover (reductions + additions)	127086.4	49476.6	5768.4	10044.8	- C	peni
Total turnover as a % of opening land cover	2.3	7.0	8.8	1.4		peni
No land cover change	5485734.2	664926.2	62273.5	732779.2		
No land cover change as a % of opening LC	97.7	94.1	94.8	99.4	Δ	dditi
Land cover 2011	5485839.2	672929.0	64655.2	738228.2		aditi

Key elements:

- Opening stock
- Additions to stock

cultivation

119379.9 23290.0

4162.5

19127.5 16.0

27452.6

115217.4

23.0

251002.6

31.0

					りんるこ								
Sugarcane	Rehabilitate d mines	Severe erosion	Dam:	- 1	Redu	No Data	Total						
503759.8	0.0	66184.6	!		~ ! •						6833.64	9438276.0	
52252.4	3035.9	27493.7		- (Closir	ng s	stc)CK			98888.68		
169944.7	0.0	8622.1			0.00	.0					126.24		
-117692.4	3035.9	18871.6		7879.9	33416.1	11	34.3	8347.6	1511.8	37222.5	98762.4		
-23.4		28.5		15.0	12.9		36.5	4.3	33.4	48.7	1445.2		
222197.1	3035.9	36115.8		10295.4	75875.2	18	84.3	46765.8	2212.4	49915.9	99014.9	2156976.7	
44.1		54.6		19.6	29.3		60.6	24.4	48.9	65.3	1448.9	22.9	
333815.1	0.0	57562.4		51259.1	237484.0	27	33.5	172728.2	4173.2	70128.8	6707.4	.4 8359787.	
66.3		87.0		97.7	91.8	87.9		90.0	90.0 92.3		98.2	88.6	
386067.5	3035.9	85056.1		60346.8	292129.7	42	42.8	200284.9	6035.3	113698.0	105596.1	9438276.0	
3633.7	288.4	11233.6		5354.0	47300.7	1	37.6	8075.44	1145.76	9084.48	16.92		
3758.5	1584.4	1149.3		343.0	6493.1	4	85.9	449.96	331.92	21.16	0		
-124.8	-1296.0	10084.3		5011.0	1.0 40807.6 -348.3 7625.5 813.8		9063.3	16.9					
0.0	-42.7	11.9		8.3	14.0		-8.2	3.8	13.5	8.0	0.0		
7392.2	1872.8	12383.0		5697.0	53793.8	6	23.5	8525.4	1477.7	9105.6	16.9	448616.4	
1.9	61.7	14.6		9.4	18.4		14.7	4.3	24.5	8.0	0.0	4.8	
382309.0	1451.5	83906.8		8.0003	285636.6	37	56.9	199834.9	5703.4	113676.8	105596.1	9213967.8	
99.0	47.8	98.6		99.4	97.8		88.5	99.8	94.5	100.0	100.0	97.6	
385942.7	1739.9	95140.4		65357.8	332937.3	38	94.5	207910.4	6849.2	122761.3	105613.0	9438276.0	

What key changes are taking place in the landscape?

Which biomes are most at risk?

 Largest absolute decline in extent – Grassland biome (important role in water provision)

Largest
 proportional
 decline in extent –
 Indian Ocean
 Coastal Belt

Belt

Which ecosystem assets are most at risk?

A few examples – clear links to ecosystem servicaecisions

		Incr	Increases (positive numbers) and decreases (negative natural) from 10 land cover classes within each vegetation type of 10 land cover clas												
Hectares Vegetation type	Biome	Natural	Degraded	w lan	atior	sten		Irrigio Di agricultus	Stoke Sugarcane	Rehabilitated mines	Severe erosion	Dams	Low density settlement	Turfed recreation areas	=
Freshwater Wetlands 🖊	Wetland	-8336	1039	563	Be	3130	2331	548	-1102	-193	-1873	2500	521	-596	
Alluvial Wetlands	Wetland	-1 8363	-344	CAL.	209.	16066	5045	680	-2710	-1961	-7854	11512	1967	-683	
Southern Drakensberg Highland Grassland	Grassland	-1053	oth	SI., 0	ntel	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	0	0	0	-32	35	37	1	
Northern Drakensberg Highland Grassland	Grassland	rstre	1685	SU.	-13	-27	1	0	0	-68	64	-274	350	-28	
Subtropical Dune Thicket	Grassland Grassland OCB	Ways	293	0	1	1	0	0	-11	0	0	-2	3	-7	

- Conversion recipiliuvial wetlands (floodplains) and freshwater wetlands to subsistence agriculture, dryland cultivation and dams → Water quality impacts? Flood risk?
- Degradation of Subtropical Dune Thicket

 Coastal storm risk?
- Degradation of Highveld Grassland → Major water source area for Durban

Links to socio-economic data

Challenges for uptake of accounts

- Initial pilots provided proof of concept
- Lots of interest from potential users...
- ... Need further interpretation, communication and mainstreaming
- AND regular accounts

Challenges in building accounts

- Consistent time series data
- Building a technical team, including:
 - GIS and spatial analysis skills
 - Ecological understanding and interpretation
 - Mainstreaming and communications expertise

Next steps

- UNSD-led EU-funded project on NCA (2017 2019)
 - SA one of five pilot countries
- National GEF6 project on biodiversity & water security (2017-2021)
 - includes NCA component
- Development and implementation of national programme of work for ecosystem accounts
- Continued Stats SA SANBI partnership

Pilot ecosystem accounting reports available at SANBI's Biodiversity Advisor website http://biodiversityadvisor.sanbi.org (under "Planning and Assessment" section)

Policy uses of ecosystem accounts

- Land-use planning
 - e.g. municipal Spatial Development Frameworks
- Natural resource management
 - e.g. priorities for restoration
- Strategic development planning
 - e.g. understanding broader trade-offs
- Headline indicators
 - e.g. percentage turnover in land cover

Traditionally we use maps of biodiversity priority areas, but accounts have potential to reach a wider audience