

InVEST:

Quantifying ecosystem services

Taylor Ricketts Emily McKenzie

Natural Capital Project

World Wildlife Fund – U.S.

Challenge: mainstreaming ES

- "You can only manage what you can measure."
- Provide tools to incorporate ecosystem services into decisions and policies
- Questions:
 - Where do ES come from?
 - Who do they benefit (or not)?
 - How will they change in future?
- Evaluate choices, quantify tradeoffs

The Natural Capital Project

InVEST

Multiple ecosystem services

Carbon storage

Non-timber forest products

Sediment retention

Water purification

Coastal storm protection

Crop pollination

Fish production

A Tiered Approach

Informing decisions

Demonstration Sites

- Test InVEST with field partners and experts
- Advance concrete policy goals
- Roll up / share lessons

Central Sumatra

- Island-wide land-use planning
 - Now at district scale
- Governors' commitment
 - Planning
 - Incentives
- Our role:
 - map sources of ES
 - Recommend options to capture values

Scenarios of change

2020 Existing plan

2020 Sumatra Vision

Change in carbon stored

2020 Existing plan

2020 Sumatra Vision

Accounting for carbon changes

Tradeoff analyses

Production function

Carbon storage

- ~ f(veg, storage/ha, harvest, decay)
- Inputs: land use/cover, C densities, harvest rates, decay rates of harvested wood.
- Outputs: C stored/ha
- Valuation: damage costs avoided

Sediment retention

- ~ f(soil, slope length, veg, rain, neighbors)
- Inputs: land use/cover, topography, soils, precip, basins
- Outputs: tons sediment retained/ha
- <u>Valuation</u>: replacement costs avoided (dredging)

Other projects

- Range of policy contexts
- TEEB case studies

Scientific Foundation

100 + authors April 2011

InVEST software tool

http://invest.ecoinformatics.org

Capacity building

(MA Sub-global assessment, ProEcoServe)

Engaging people

InVEST attributes

- Multiple services and tradeoffs
- Spatially explicit (mapped)
- Production functions
- Evaluate CHANGE: choices, tradeoffs
- Simple
- Open source many contributors, updates
- To date: subnational, but early national trials

Challenges

Data – even for tier 1 models

- Capacity to interpret and apply
- Water-related services

-Governmental silos

How can InVEST* help?

- Identify key sources of ES (Kirk)
- Make ES "visible" in Nat. Accounts (Glenn-Marie)
- Demonstrate value, regardless of capture (Pavan)
- Quantify, map externalities (Kirk)
- Retain spatial data within national accounts (G-M)

* Or similar approaches

People 1

Andrew Balmford Nirmal Bhagabati **Neil Burgess Gretchen Daily** Brendan Fisher Peter Kareiva **Eric Lonsdorf** Guillermo Mendoza Shadrack Mwakalila Robin Naidoo Erik Nelson Nasser Olwero Steve Polasky Jim Regetz Amy Rosenthal Mathieu Rouget Mary Ruckelshaus **Heather Tallis Buzz Thompson** Kerry Turner

Thanks...

Suppor NSF **NSF-NCEAS** NASA Leverhulme Trust Google **Packard Foundation** MacArthur Foundation **Summit Foundation** Roger and Vicki Sant Peter and Helen Bing

What are we measuring?

	Timber Production	Crop Pollination
Supply	Standing stock of wood (cubic feet ha-1)	Insect abundance (# insects ha ⁻¹)
Use-intermediate service	None	Insect abundance contributing to crop (# of insects ha-1)
Use- final service	Harvested wood (cubic feet ha ⁻¹)	Crop yield due to insects (kg crop ha ⁻¹)
Value	NPV of harvested timber (\$ ha ⁻¹)	NPV of additional crop yield (\$ ha ⁻¹)