Natural Capital Policy Forum, Nov 26-27, 2018, Paris, France

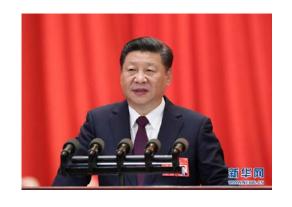
Mainstreaming ecosystem service accounting into conservation policy in China

Zhiyun Ouyang

Research Center for Eco-Environmental Sciences
Chinese Academy of Sciences

Contents

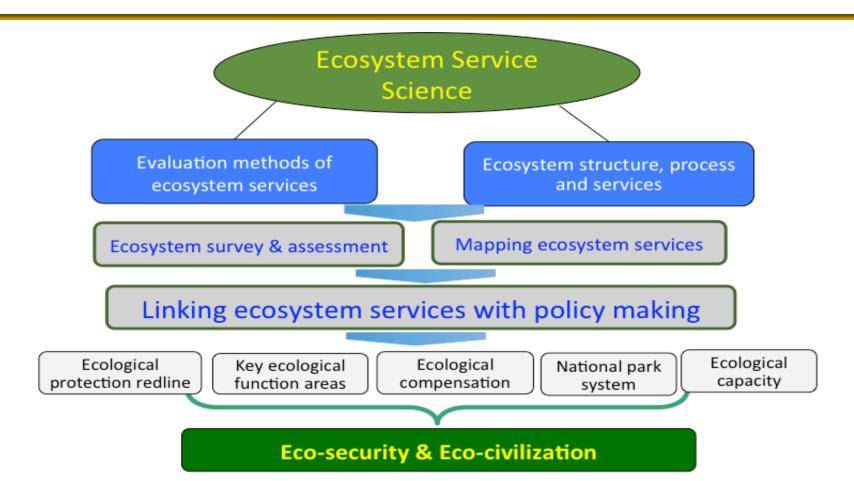
- → Background
- → China ecosystem survey and assessment
- → Mapping ecosystem services of China
- → Gross ecosystem product (GEP) accounting
- ★ Linking ecosystem services to policy-making


Background

China's environment is facing increasing challenges from

- ♦ Huge population: 1.38 billion
- ♦ Fast urbanization: Urban rates 57 % in 2016, 36% in 2000
- ♦ Massive natural resource exploitation
 - Coal mining: 3.7 billion tons
 - Fresh water withdrawn: 326.3 billion M³
- ♦ Ecosystem service decline
 - Wildlife habitat lost
 - Soil erosions and rocky desertification,
 - Frequency of sandstorm and flooding
- ♦ Vicious-circle of ecosystem degradation and poverty

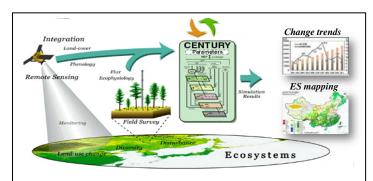
Background

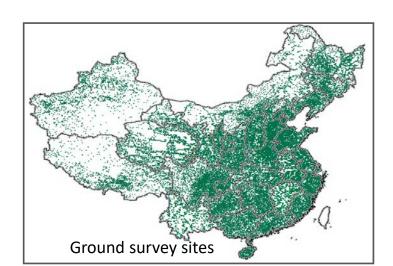

China's Dream

- ♦ Harmonizing people and nature
- → Building the ecological civilization of the 21st century

Key issues: how to coordinate conservation and development?

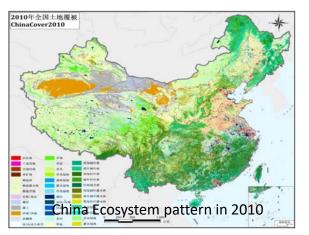
- ✓ Where we must protect to ensure sustainable supply of ecosystem services?
- ✓ How to achieve natural capital conservation & poverty alleviation?
- ✓ How to evaluate the development achievements, not only GDP?

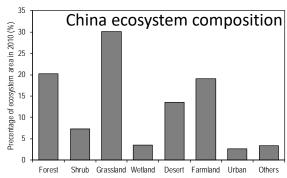

Background



China ecosystem survey and assessment

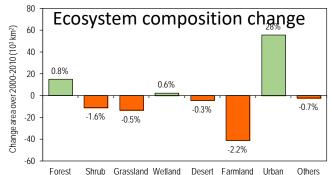
China ecosystem survey and assessment

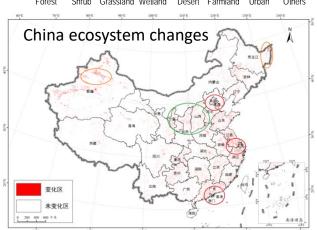

- ♦ Scales: Provincial (31)—Regional—National scales
- ♦ Remote sensing data: 21,808 images for 2000, 2005, 2010, 2015
- ◆ Ground survey sites: 114,500
- Model: InVEST and others
- ◆ Goals: Build an overall image of ecosystem status of China
 - ✓ Ecosystem distribution and patterns
 - ✓ Ecosystem quality and their changes
 - ✓ Ecosystem services and their changes
 - ✓ Identify crucial areas for ecosystem services



China ecosystem patterns and changes

China ecosystem composition and patterns

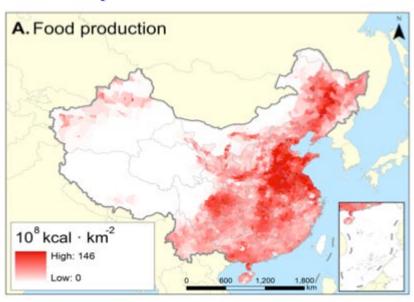



Ecosystem types	Areas (km²)	Percentages (%)
Forests	190.83	20.17
Shrubs	69.23	7.32
Grassland	283.68	29.98
Wetland	35.61	3.76
Desert	127.73	13.50
Cropland	181.59	19.19
Urban	25.41	2.69
Others	32.02	3.38

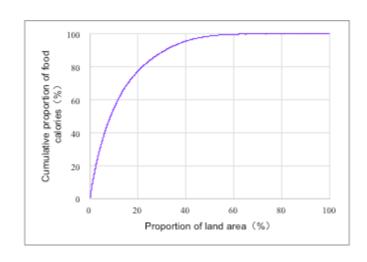
Grassland, forest, cropland and desert were made of 82.8% of total area of China

China ecosystem patterns and changes

Changes of ecosystem composition and pattern

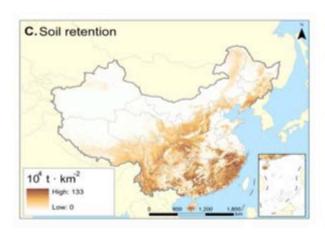

Urbanization regions: Yangtze river delta, Jing-Jin-Ji, Zhujiang river delta, Liaodong peninsula, Shangdong peninsula

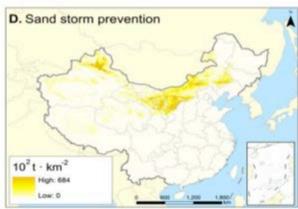
Cropland expansion region: North-eastern plain, DaxinganLing, in North-eastern China, Oasis surroundings in Xingjiang, Coastal regions in northern Jiangsu.

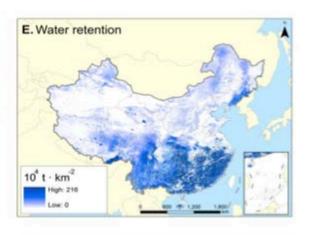

Forest restored regions: Loess Plateau, the surroundings of Sichuan Plain, Zhejiang, Guizhou, Chongqing

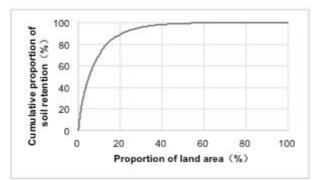
- ♦ Food production
- Water retention
- Soil retention
- Sand storm prevention
- Carbon sequestration
- Flood mitigation
- Biodiversity conservation

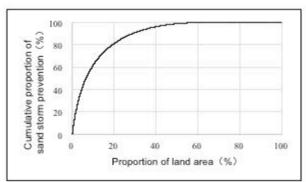
Food production

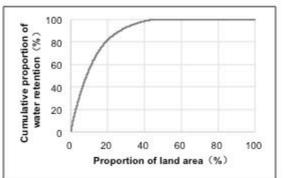


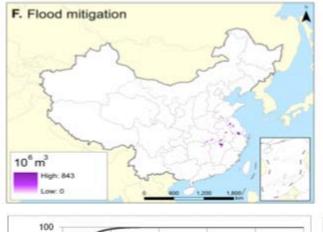

The curve showed that 18.5% land provided 75% food of China

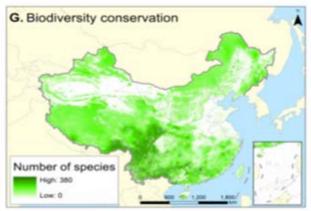


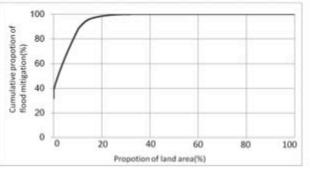

Importance of food production	Area (10 ⁴ km²)	Area proportion (%)
Very high	80.86	8.54
High	94.71	10.01
Medium	121.74	12.86
Normal	649.25	68.59

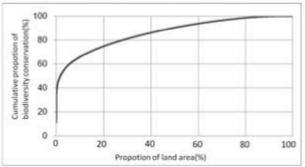

Ecosystem service pattern in China

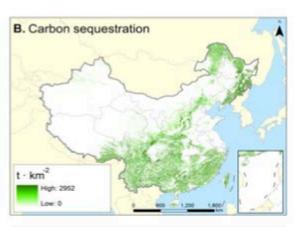


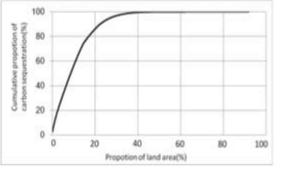


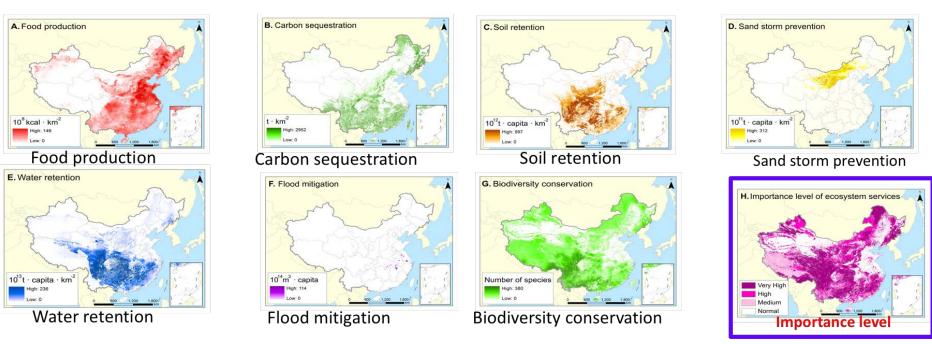


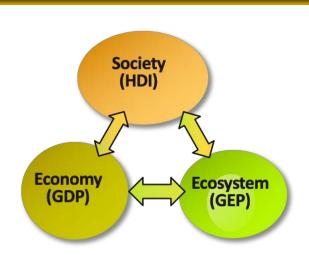




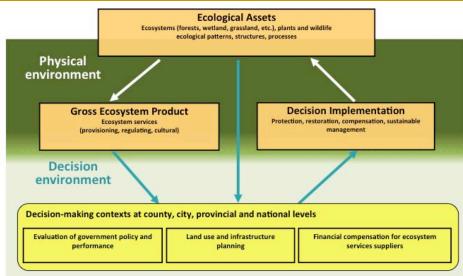

Ecosystem service pattern in China






Spatial pattern of ecosystem services

We translated biophysical supply of ecosystem services into importance of service provision by weighting supply by the number of people affected.


Gross ecosystem product (GEP) accounting

- ♦ A region or city is a coupled human and natural system, consisting of social, economic and natural sub-systems.
- China, as well as many other countries, needs a index or system to evaluate:
 - ✓ contribution of ecosystems to human welfare.
 - ✓ effects of natural conservation efforts.
 - ✓ performance of local government or communities in natural conservation, particularly in China.
- ♦ Gross Ecosystem Product (GEP)
 - ✓ the total value of ecosystem final goods and services supplied to human well-being in a region annually, like a country, province/state, county or city.

GEP accounting can be a potential tools to link ecosystem service accounting to conservation policy.

- China is studying GEP accounting methods and technical guideline at national, provincial, and county levels.
- Pilot studies were widely distributed in China.

The principles of GEP accounting

- ♦ Use value of ecosystem services
 - ✓ Direct use value: food, bio-energy, water resource,
 - ✓ Indirect use value: water retention, soil retention, pollutant purification,
- ♦ The value of final eco-services
 - ✓ Ecosystem goods, regulating services, cultural services
- ♦ The bio-physical value accounting
 - ✓ Amount of food production, amount of water retention, amount of soil retention,
- ♦ The monetary value accounting
 - ✓ The economic value accounting based on bio-physical value accounting.

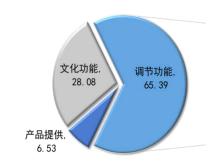
GEP =
$$EPV + ERV + ECV$$

GEP = $\sum_{i=1}^{n} EP_i \times P_i + \sum_{j=1}^{m} ER_j \times P_j + \sum_{k=1}^{l} EC_k \times P_k$

✓ GEP: the sum economic value of ecosystem provision services (EPV), regulating services (ERV) and cultural services (ECV) in the given area annually.

Ecosystem services


Categories	Goods and services (examples)	
	Food: grain, vegetable, fruits, meat, milk, egg, fish,	
Provisioning	Materials: wood, fiber, water, genes,	
services	Energy: bio-energy(fuelwood), hydro-power	
	Others: herb medicine, seedling, ornament	
	Regulation services: water conservation, carbon sequestration,	
Dogulating convices	climate regulating, pollutant purification, pollination, pest control,	
Regulating services	Sheltering services: sand storm prevention, flooding mitigation, soil	
	conservation	
Cultural service	Aesthetic services: recreation and ecotourism	
Cultural Service	Cultural value: knowledge, education, arts, spirit	


GEP accounting in

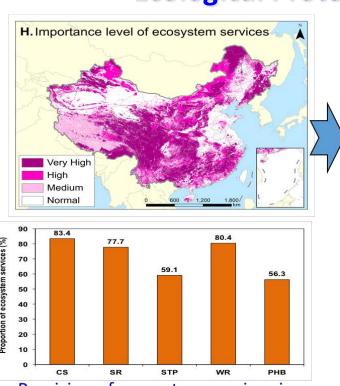
Qinghai province, Qiandongnan city and Eshan county

Areas	GEP (billion yuan)	Provisioning services (billion yuan)	Regulating services (billion yuan)	Cultural services (billion yuan)
Qinghai Province	1714.83	45.38	1595.04	74.41
Qiandongnan city	413.63	27.00	270.48	116.16
Eshan County	15.78	1.89	11.84	2.05

The value of regulating services of Qinghai Province in 2015

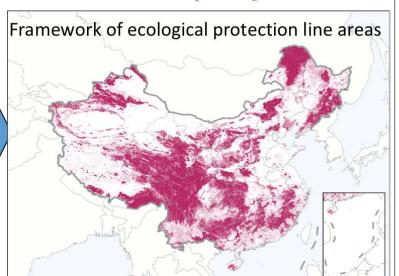
Compined	Indicators	Quantification		Value	Total
Services	er vices indicators		Unit	(billion yuan)	(billion yuan
Water retention	Amount of water conservation	638.72	$10^8 \mathrm{m}^3$	517.36	517.36
	Amount of soil retention	3.91	10^8m^3	6.99	
Soil retention	Reduction of nitrogen non-point source pollution	0.08	10 ⁸ t	14.58	28.38
	Reduction of phosphorus non-point source pollution	0.02	10 ⁸ t	6.81	
Sand fixation	Amount of sand fixation	11.74	10 ⁸ t	33.19	33.19
	Amount of lakes flood mitigation	48.04	$10^8 \mathrm{m}^3$	38.91	
Flood mitigation	Amount of reservoirs flood mitigation	11.60	10^8m^3	9.40	60.75
	Amount of swamps flood mitigation	15.36	$10^8 \mathrm{m}^3$	12.45	
	Amount of sulfur dioxide absorption	93.63	10 ⁴ t	1.18	1.25
Air purification	Amount of nitrogen oxide absorption	4.92	10 ⁴ t	0.06	
	Reduce the amount of industrial dust	2.11	10 ⁴ t	0.003	
	Reduction in the amount of COD emission	220.39	10 ⁴ t	3.09	
Water purification	Reduction in the amount of total nitrogen emission	17.08	10 ⁴ t	0.3	3.86
	Reduction in the amount of total phosphorus emission	17.08	10 ⁴ t	0.48	
Carbon sequestration -oxygen release	Amounts of carbon sequestration	0.2567	10 ⁸ t	9.91	23.57
	Amounts of oxygen release	0.1867	10 ⁸ t	13.66	
Climate regulation	Energy consumption of plant transpiration	6534.60	108 kwh	346.33	917.82
	Energy consumption of water surface evaporation	10782.81	10 ⁸ kwh	571.49	
Biological control	Area of pests and diseases occurrence	0.29	10 ⁸ mu	8.85	8.85
Total			1,595.04	1,595.04	

The value of regulating services of Qiandongnan city


Services	Indicators	Quantification		Value	Total	
Services	Indicators	Quantification	Unit	(billion yuan)	(billion yuan)	
Water retention	Amount of water conservation	137.26	$10^8 \mathrm{m}^3$	111.183	111.183	
	Amount of soil retention	24.84	$10^8 \mathrm{m}^3$	9.043		
Soil retention	Reduction of nitrogen non-point source pollution	0.09	10 ⁸ t	16.087	32.642	
	Reduction of phosphorus non-point source pollution	0.03	10 ⁸ t	7.513		
Elood mitigation	Amount of lakes flood mitigation	0.02	10^8m^3	0.014	12.400	
Flood mitigation	Amount of reservoirs flood mitigation	16.54	$10^8 \mathrm{m}^3$	13.395	13.409	
	Amount of sulfur dioxide absorption	45.27	10 ⁴ t	0.57		
Air purification	Amount of nitrogen oxide absorption	1.71	10 ⁴ t	0.021	0.594	
	Reduce the amount of industrial dust	1.17	10 ⁴ t	0.002		
	Reduction in the amount of COD emission	1.98	10 ⁴ t	0.028		
Water purification	Reduction in the amount of total nitrogen emission	0.15	10 ⁴ t	0.003	0.035	
	Reduction in the amount of total phosphorus emission	0.15	10 ⁴ t	0.004		
Carbon sequestration	Amounts of carbon sequestration	0.15	10 ⁸ t	5.817		
-oxygen release	Amounts of oxygen release	0.11	10 ⁸ t	8.023	13.84	
	Energy consumption of plant transpiration	1689 63	10 ⁸ kwh	90 201		

The value of regulating services of Eshan County

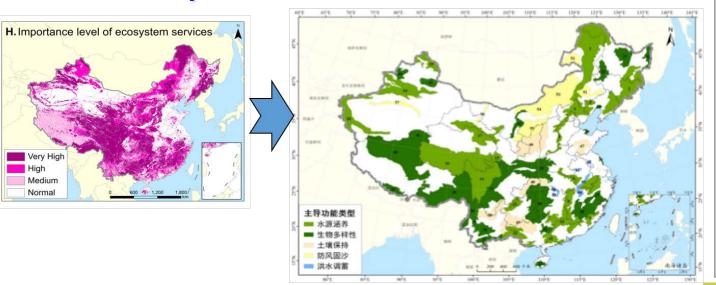
Services	Indicators	Quantification		Value	Total
Sel vices	mulcators	Quantification	Unit	(billion yuan)	(billion yuan)
Water retention	Amount of water conservation	4.34	$10^8 \mathrm{m}^3$	3.518	3.518
	Amount of soil retention	0.21	$10^8 \mathrm{m}^3$	0.384	
Soil retention	Reduction of nitrogen non-point source pollution	0.004	10 ⁸ t	0.74	1.469
	Reduction of phosphorus non-point source pollution	0.001	10 ⁸ t	0.345	
Flood mitigation	Amount of reservoirs flood mitigation	0.26	10^8m^3	0.214	0.214
	Amount of sulfur dioxide absorption	2.94	$10^{4} \mathrm{t}$	0.037	
Air purification	Amount of nitrogen oxide absorption	0.11	$10^{4} \mathrm{t}$	0.001	0.0381
	Reduce the amount of industrial dust	0.07	$10^{4} \mathrm{t}$	0.0001	
	Reduction in the amount of COD emission	0.18	$10^{4} \mathrm{t}$	0.002	
Water purification	Reduction in the amount of total nitrogen emission	0.01	10 ⁴ t	0.0002	0.0026
	Reduction in the amount of total phosphorus emission	0.01	$10^{4} \mathrm{t}$	0.0004	
Carbon sequestration	Amounts of carbon sequestration	0.0055	10 ⁸ t	0.212	0.505
-oxygen release	Amounts of oxygen release	0.004	10 ⁸ t	0.293	0.505
Climate regulation	Energy consumption of plant transpiration	105.45	10 ⁸ kwh	5.589	6.092
	Energy consumption of water surface evaporation	9.49	10 ⁸ kwh	0.503	
Biological control	Area of pests and diseases occurrence	0.0001	10 ⁸ mu	0.003	0.003
Total				11.843	11.843


- → Identify crucial areas of ecosystem services
- ★ Figure out conservation gabs
- ★ Initiate and supporting new conservation policy

Ecological Protection Redline (EPR)

Provision of ecosystem services in

EPR Areas (35 %)



- ★ The very high important areas are planned as Ecological Protection Redline (EPR) to protected strictly for providing ecosystem services and wildlife habitat
- ◆ EPR: 35 % of China

Guideline for ecological redlining by MEP and NDRC

Ecosystem function conservation areas



- → 63 areas with critical ecosystem services were identified as Ecosystem function conservation areas (EFCAs) released in 2015 by MEP and CAS.
- → Total 63 EFCAs, 49% of China.

- Water retention
- Biodiversity conservation
- Soil retention
- Sand fixation
- Flood mitigation

National park system planning

Year	Budgets (billions RMB)	Benefited Counties
2008	6.0	221
2010	24.9	437
2014	48.3	512
2017	62.7	715

- → In order to push conservation in key ecological function areas, Center government launched ecological financial transfer program based on ecosystem service pattern.
- → The budget was increased to 62.7 billion yuan in 2017 from 6.0 billion yuan in 2008.

- ★ The information and findings in ecosystem service studies have been used in supporting national, regional, provincial conservation policy making and environmental management.
 - ♦ National and provincial ecological redline planning
 - ♦ National key ecological functional region planning
 - ♦ National park planning
 - ♦ National ecological transfer payment
 - ♦ National and provincial natural reserve monitoring
 - ♦ Ecological carrying capacity assessment and early warning.
- → Database: http://www.ecosystem.csdb.cn/: 3T

Conclusion

- China has made big efforts to apply ecosystem service evaluation and accounting in conservation policies.
- ♦ Ecosystem service accounting can be powerful and useful tools to support policy making and innovation in biodiversity and natural conservation.
- **♦ GEP accounting provide a new tools to evaluate**
 - ✓ Effectiveness of ecological compensation and restoration, and related policy
 - ✓ Conservation efforts and efficiency of local government
 - ✓ The contribution of nature to human
 - ✓ While, there are many questions need to study in GEP accounting.

♦ Scientific infrastructure

- ✓ Methods improvement of evaluation, monitoring of ecosystem services.
- ✓ We need powerful ecosystem service assessment tools and platform.

Thanks!

