

Water Accounting

International Case Studies

Michael Nagy Environment and Multi-Domain Statistics Section UNECE Statistical Division

Environmental-Economic Accounting for Water

- SEEA-Water is a statistical standard since 2007, now conceptually incorporated into SEEA-CF (2012)
- Covers the full water cycle (natural water cycle, water flows within the economy, flows of water from and to the economy)
- Conceptually consistent with water statistics of UN (FDES), OECD and Eurostat
- Links physical and economic information
- Provides data for Integrated Water Resources
 Management
- Provides conceptual links to Water Footprint, Virtual Water and important indicator frameworks (DPSIR, MDGs, SDGs etc.)

Environmental-economic accounting

Brings together economic and environmental information

Typical national water policy questions

- Which industries use the most water? How much water do households use?
- Who pays the most for water?
- Are the levels of pollutants emitted to water acceptable? Are they decreasing? What are the main sources of pollution? What investments are made for the purpose of reducing pollutant emissions?
- Are water resources being used sustainably? Who benefits in the allocation of scarce water resources?
- Is water used efficiently? What's the relation between economic output and use or pollution of water for the different industries?
- What are the opportunities to increase water supply? Is desalination of seawater or reuse of wastewater a possible solution? How much water is lost during transport?
- Are water resources being depleted?
- Have measures to improve water use efficiency been successful?
- What are the investments in water supply and sanitation services? How are the costs being recovered? Are the services affordable to the population?

Some water-related targets in the Sustainable Development Goals

Goal 6: Ensure availability and sustainable management of water and sanitation for all

- Target 6.3 By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and increasing recycling and safe reuse by [x] per cent globally.
- Target 6.4 By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity.

Examples for Indicators from Water Accounting

- Macro trends in total water use
- Macro trends in water pollution
- Decoupling economic growth and water use
- Decoupling economic growth and water pollution
- Industry-level trends

Jordan – Water issues

- Scarcity of renewable water resources
- Depletion of groundwater
- High losses during distribution and weakness in delivery
- Limited capacity of waste water treatment plants
- High population number and ongoing immigration

Jordan – Water Resource

- 70% of the country receives less than 100 mm
- 90% of the country receives less than 200 mm
- North western highland (2% of country) receives around 300 mm

Water resources

- Surface water: Jordan rift Valley, Springs and Floods
- Groundwater: Renewable and Non-Renewable
- Treated Waste Water

Physical use table											
P hysica					al units						
				Indus tr	ies (by IS	IC cate	gories)		lds	e.	
		1irrig.	1 stock	except 1,35,36 ,37	35	36	37	Total	Househo	Rest of th world	Total
	U1- To tal abs trac tion (=a.1+a.2= b.1+b.2):	0	0	0	0	857.4	0	857.4	0		857.4
	a.1- A bs traction for own use	0	0	0	0	368.7	0.0	368.7	0		368.7
	a.2- A bs traction for distribution	0	0	0	0	488.7	0.0	488.7	0		488.7
	b.1-From water resources:	0	0	0	0	857.4	0	857.4	0		857.4
F ro m the	Surface water	0	0	0	0	3514	0	3514	0		3514
e nviro nm e nt	G ro undwa te r	0	0	0	0	506	0	506	0		506
	S o il water	0	0	0	0	0	0	0	0		0
	b.2-From othersources	0	0	0	0	0	0	0	0		0
	C o llection of precipitation	0	0	0	0	0	0	0	0		0
	A bs trac tion from the sea	0	0	0	0	0	0	0	0		0
Within the economy	U2 - Use of water received from other economic units	379.9	4.446	2189	0	0	89.4	495.7	166		6617
	of which : Reused water	83.6						83.6			83.6
	of which : Wastewater to sewerage						89.4	89.4			89.4
U=U1+U2 - Total use of water		379.9	4.446	2189	0	857.4	89.4	1353	166		15 19
	Phys	ical sup	oply tal	ble							
P hysical units					al units						
	Industries (by IS IC categories		go ries)		lds	ě					
		1irrig.	1 stock	2-33, 41-43	35	36	37	Total	Househo	Rest of th world	Total
XAY0.11	S 1-Supply of water to othereconomic units	54.2	0.8	4.0	0.0	488.7	83.6	6313	30.4		6617
Within the economy	of which : Reused water						83.6	83.6			83.6
	Wastewater to sewerage	54.2	0.8	4.0	0.0	0.0	0.0	59.0	30.4		89.4
To the enviro nment	S2 - Total returns (= d.1+d.2)	0	0	0	0	368.7	5.7	374.4	0		374.4
	d.1-To water resources	0	0	0	0	0	0	0	0		0
	Surface water	United		þ	0	368.7	5.7	374.4	0		374.4
	G ro undwa te r	Nat	Nations:		0	0	0	0	0		0
	S o il water	LASS	umesa		0	0	0	0	0		0
	d.2-To othersources (e.g. Sea water)	0	0	0	0	0	0	0	0		0
S - Total supply of water (= S 1+S 2)		54.2	0.8	4.0	0.0	857.4	89.3	1005.7	30.4		1036.1
Consumption (U-S)		325.7	3.6	17.9	0.0	0.0	0.1	347.3	135.6		483.0

Jordan – difficulties

- Lack of detailed data related to natural resources. For example little or no data for:
 - stock at the beginning and end of an accounting period for the water asset accounts
 - degradation and pollution of water resources which is expensive
 - valuation of water in agriculture
- Fear of under- or overestimating of water resources
- Need of training on calculation methodologies

Jordan – Developing an implementation plan

Identification of

- resources available
- responsibilities of the different government agencies
- data sources and procedures for accessing data
- a review process prior to publishing & dissemination
- A structure for coordinating the organizational units within the Department of Statistics (National Accounts Branch, Environment Statistics Unit, survey areas)
- A mechanism for involving key stakeholders (e.g. government agencies, research community, industry representatives, non-government organizations)

A timetable and milestones

* Note shown is the supply of distributed water and reuse water by mining and manufacturing, 25 GL in total.

* Note shown is the supply of distributed water and reuse water by mining and manufacturing, 25 GL in total. No monetary available for these.

Example Australia: Monetary versus physical use of distributed water (% of total use)

Australia: Analysing changes over time

Percentage of mean annual rainfall 2002-03 to -2004-05

Projecting future water demands Australia 2050

UNITED NATION FOR EUROPE

Modelling Effects of Price Changes: Murray-Darling River Basin Australia

Based on historical water use & price data, simulated impact on GDP of doubling water prices and the expected increases in water use efficiency (WUE) of 1-2%

	Increase in GDP, A\$million		
	1%increase WUE	2% increase WUE	
Irrigated agriculture	-24	78	
Dryland agriculture	-51	-112	
Food and fibre processing	44	97	
Other industries	262	410	
Total impact on GDP	253	521	

Pilot Water Accounts for Oman and Bahrain

Pilot Water accounts for Oman Trial population of physical supply and use diagram

Wastewater Reuse water

Environmental Economic Profiles Sweden 1995

Pulp, paper and paper products

0 20 40 60 80 100 P ro ductio n value Value added Hours worked Use of energy Use of self-supplied water Use of distributed water Use of water for cooling Use of water in the industrial process Otheruses of water Direct discharge of wastewater Discharge to MWWTP EPE internal expenditures EPE payments to MWWTP EPI for was tewater

Chemicals and chemical products

Water use by sectors (Sweden, 2010)

Water use by sectors, 2010

Netherlands: Green Growth Indicators

Preliminary Scores of Green Growth Indicators

Group	Indicator	Time series	Trend	Policy targets
Environmental	Production-based greenhouse gas intensity	1990-2009	Relative decoupling	Likely to be met
efficiency	Consumption-based greenhouse gas emissions	1996-2009	Relative decoupling	-
	Energy efficiency	1990-2009	Relative decoupling	-
	Renewable energy	1990-2009	Improvement	Unlikely to be met
	Nutrient surpluses	1990-2009	Absolute decoupling	Likely to be met
	Material intensity	1996-2008	Relative decoupling	-
	Water use intensity	1990-2009	Absolute decoupling	-
	Water treatment	1985-2008	Improvement	Likely to be met
Natural	Stocks of standing timber	1990-2005	Improvement	Unlikely to be met
asset base	Fish inputs	1996-2008	Deterioration	-
	Natural gas reserves	1996-2010	Deterioration	-
	Land conversion into built-up land	1900-2006	-	-
	Threat to biodiversity	1994–2005	Deterioration	Unlikely to be met
Quality of life	Pollution induced health problems	1980-2000	Imporvement	-
Policy	Green patents	2000-2006	Increase	-
responses	Share of green taxes	1990-2009	Increase	-
	Energy prices	1990-2009	-	-
	Carbon trade	2005-2009	-	-
	Environmental investments	1990-2007	Stable	-
	Green jobs	1995-2008	Increase	-

-not possible to score, no policy target identified or inconclusive trend

Some take-home messages

Water Accounts provide a single set of trusted information for multiple purposes, e.g.:

- Water Policies
- Natural resources management
- National and international indicators
- Integration with other accounts (combined presentations)
- Analysis and modelling
- A flexible system in that its implementation can be adapted to countries' priorities and policy needs while at the same time providing a common framework and common concepts, terms and definitions.
- Not necessary to compile all accounts at once. Start with the most important ones.
- Institutional cooperation is essential.

Thank you for your attention!

michael.nagy@unece.org

Non-exhaustive list of water-related indicators which can be derived from water accounts

Indicators of water availability derived from Water Accounts

Per capita renewable resources

 Ratio between Total renewable water resources and population size. (WWDR 2003, Margat 1996)

Water Exploitation index

 The total annual volume of ground and surface water abstracted for water uses as a percentage of the total annually renewable volume of freshwater. (UN, 2001)

Consumption Index

 Ratio between Water Consumption and Total Renewable Resources. (Margat, 1996)

Per capita renewable resources derived from water accounts

Water Asset account:

Total renewable water resources

Returns + Precipitation + Inflows –Evaporation – Outflows

Population

Population

Consumption Index derived from Water Accounts

Physical Supply Table

Water consumption

evaporation + transpiration + incorporated in products)

Total renewable water resources

Asset account

Returns + Precipitation + Inflows - Evaporation -

Outflows

Indicators for water intensity and productivity from SEEAW

1. Water use and pollution intensity (physical units)

m ³ water/unit of physical output	Water use or tons of pollution emitted per
Tons of pollution/unit of	unit of output, such as
physical output	population,
	number of households, or
	tons of wheat, steel, etc. produced

2. Water and pollution intensity (monetary units)

m ³ water/value of output	Water use or tons of pollution emitted per
Tons of pollution/value of output	unit of output measured in currency units

3. Water productivity ratios

GDP/ m³ water Value-added by sector/m³ water

4. Water 'pollutivity' ratios

Indicators for opportunities to increase water supply

1 Return flows	
Quantity of return flows by source	May distinguish return flows from treated return flows (from municipal and industrial users) from untreated return flows such as agriculture
Reuse water as share of total industry water use	May distinguish reuse of water within a plant from water recycled by municipal water utility
Recycled water as share of total water use by sector	
3. Losses	
Losses in abstraction and treatment as share of total water production	Both the amount and the reason for these losses are usually known by the water utility
Unaccounted for losses as share of total water use	These losses occur for a variety of causes and it is usually not certain how much each cause contributes

Indicators for cost and price of water supply and wastewater treatment

1. Supply cost and price of water				
Implicit water price	Volume of water purchased divided by supply cost			
Average water price per m ³ by industry	Volume of water purchased divided by actual payments by that industry			
Average water supply cost per m ³ by industry	Volume of water purchased divided by cost of supply to that industry			
Subsidy per m ³ by industry	Average water price minus average water supply cost			
2. Supply cost and price of wastewater t	treatment services			
Implicit wastewater treatment price	Volume of water treated divided by supply cost			
Average wastewater treatment cost per m3 by industry	Volume of wastewater divided by treatment cost for that industry			
Average wastewater treatment price per m3 by industry	Volume of wastewater divided by actual payments for treatment by that industry			
Subsidy per m3 by industry	Average wastewater price minus average wastewater supply cost			

Indicators of access to and affordability of water and sanitation services

1. Access to water and sanitation services

Average daily water consumption by households, differentiating rural and urban households

Percent of urban households with access to safe drinking water

Percent of rural households with access to safe drinking water

Percent of urban households with access to sanitation services

Percent of rural households with access to sanitation services

2. Affordability of water

Household expenditures for water as % of total expenditures, differentiating rural and urban

Average price of water to households, differentiating rural and urban

Average price of water for subsistence agriculture (irrigation and livestock watering)

